Search results for "Effective stress"
showing 10 items of 15 documents
The Residual Shear Strength of the Shaly and Sandy Facies of the Opalinus Clay
2018
The paper presents a comprehensive laboratory campaign carried out with the aim to asses the residual strength of the Opalinus Clay. Ring shear tests with vertical effective stress up to 1 MPa were performed on remoulded samples of two different facies of the Opalinus Clay. Test results show that the «Shaly» facies is characterized by a low range of variation of residual strength while the strength of the «Sandy» facies is very sensitive to the variation of grain size distribution. Microstructural analyses (SEM) suggest that the difference in the observed mechanical behavior of the two facies can be related to different particles arrangements along the shear surfaces.
Hydromechanical behaviour of a volcanic ash
2013
This paper presents experimental analysis and numerical modelling aimed at improved understanding and prediction of the hydromechanical behaviour of volcanic ash at various states of saturation. Results from a comprehensive experimental programme are presented in order to characterise the response of the material in terms of matric suction and confining stress changes. The evolution of the yield stress at different suction levels has been quantified. The volumetric response with suction variations allowed the analysis of the collapse-upon-wetting behaviour. Water retention and permeability are also addressed. Tests results are used to calibrate a constitutive model based on the effective s…
Dynamics of hydrofracturing and permeability evolution in layered reservoirs
2015
International audience; A coupled hydro-mechanical model is presented to model fluid driven fracturing in layered porous rocks. In the model the solid elastic continuum is described by a discrete element approach coupled with a fluid continuum grid that is used to solve Darcy based pressure diffusion. The model assumes poro-elasto-plastic effects and yields real time dynamic aspects of the fracturing and effective stress evolution under the influence of excess fluid pressure gradients. We show that the formation and propagation of hydrofractures are sensitive to mechanical and tectonic conditions of the system. In cases where elevated fluid pressure is the sole driving agent in a stable tec…
Solid state bonding in extrusion and FSW: process mechanics and analogies
2006
Abstract The solid state bonding occurring in extrusion and in friction stir welding (FSW) processes is investigated through FEM models previously developed and validated. In particular, for the AA6082-T6 aluminum alloys, the most relevant field variables have been monitored and compared, such as strain, strain rate, effective stress and pressure. The aim of the research is the development of an effective FSW bonding criterion.
Shear strength of a compacted scaly clay in variable saturation conditions
2015
Scaly clays are stiff and highly fissured clays often used as construction materials. This paper presents the results of triaxial compression tests carried out on saturated and unsaturated samples of a compacted scaly clay. Complementary investigation on the microstructural features and their evolution with the amount of water stored into the material are also presented in order to shed light on the evolution of the micro- and macroporosity with suction. The water retention behaviour of the compacted scaly clay is also addressed. The results from the controlled suction triaxial tests are used to discuss the applicability of a single-shear strength criterion to compacted double-structured cl…
Coupled hydro-mechanical analysis of compacted bentonite behaviour during hydration
2021
Abstract This study analyses the response of compacted bentonites upon hydration based on a coupled hydro-mechanical elasto-plastic framework. As an alternative to multi-porosity interpretation, the framework was selected based on the experimental evidence of adsorbed water behaviour in bentonites and the volumetric response at saturated states, apparently independent of its initial state. Based on these premises, a water retention model was formulated using an explicit distinction between adsorbed water and free water, enabling the postulation of the water properties and behaviour depending on its state. In order to effectively account for the transition between unsaturated to saturated st…
On the hydro-mechanical behaviour of remoulded and natural Opalinus Clay shale
2016
The geo-energy sector makes use of advanced technologies such as shale gas extraction, CO2 sequestration and nuclear waste geological disposal that rely on the exploitation of shale formations. Due to the great depths involved in these applications and the difficulties in retrieving intact samples, remoulded shale specimens are often adopted for hydro-mechanical testing. Remoulded and intact shales may substantially differ in their hydro-mechanical behaviour due to the particular structure of the natural material, which is the result of diagenesis and burial history. This paper presents an experimental campaign aimed at (i) characterizing the role of diagenesis and depth for Opalinus Clay s…
Shear strength of steel fiber reinforced concrete beams with stirrups
2006
The present paper proposes a semi-empirical analytical expression that is capable of determining the shear strength of reinforced concrete beams with longitudinal bars, in the presence of reinforcing fibers and transverse stirrups. The expression is based on an evaluation of the strength contribution of beam and arch actions and it makes it possible to take their interaction with the fibers into account. For the strength contribution of stirrups, the effective stress reached at beam failure was considered by introducing an effectiveness function. This function shows the share of beam action strength contribution on the global strength of the beam calculated including the effect of fibers. T…
Thermo-mechanical volume change behaviour of Opalinus Clay
2016
The paper examines the thermo-mechanical volume change behaviour of Opalinus Clay in relation to different stress conditions and overconsolidation ratio (OCR) values and evaluates the impact of temperature on some hydro-mechanical properties of this material. To this aim, a focused experimental campaign consisting in high-temperature/high-pressure oedometric tests has been carried out. The results show that the thermo-mechanical volume change behaviour of Opalinus Clay is heavily affected by the OCR: thermal expansion is found when the heating is carried out at high OCR, whereas irreversible thermal compaction is observed when heat is applied at a vertical effective stress that is sufficien…
Benchmark study of undrained triaxial testing of Opalinus Clay shale: Results and implications for robust testing
2021
Triaxial testing of argillaceous rocks and shales is significantly more challenging than conventional rock mechanical testing. The challenges are mainly related to the very low permeability of these geomaterials, and their sensitivity to exposure of atmosphere and brines, which induces variations of water content, suction and effective stress. There are currently no international standards to guide service laboratories for robust testing procedures for shales. A benchmark study of undrained triaxial testing was therefore initiated with three leading service laboratories in shale testing, performing 13 tests and using two different methods of establishing sample saturation prior to deformati…